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ABSTRACT 

Various properties of a one-dimensional fluid with nearest neighbor 
interactions have been studied with the help of a high-speed computer. 
Because of the simplicity of the interaction potential employed, it is possible 
to follow the dynamical evolution of the system and so compute meaningful 
time averages. At the same time, one can compute the values of the corre- 
sponding phase averages and so compare the two results. In computing the 
phase averages it was necessary to use the Lebowitz-Percus method for 
relating phase averages calculated with one type of ensemble to those cal- 
culated with some other type. This necessity arises because one can compute 
phase averages for an isobaric canonical ensemble in closed form with the 
type of forces involved, while one needs phase averages for a microcanonical 
ensemble in order to compare with the time averages. The results of our 
investigation very clearly showed the necessity of using the latter ensemble 
in making this comparison. In one case, using a thousand particle system we 
found the time average of B = l/kT to be 4.8353. Its value for an isobaric- 
canonical ensemble was 4.8261 while for a microcanonical ensemble it 
was 4.8343. In addition to the above equilibrium studies, we have considered 
the approach to equilibrium of our system starting from a manifestly non- 
equilibrium state. 
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INTRODUCTION 

With the advent of high-speed computers the possibility arose of the 
numerical study of simple N-body systems where N > 10. For the 
most part these calculations were restricted to a determination of equa- 
tions of state for these systems. Thus, Alder and Wainwright [I ] studied 
the equation of state for a system of hard spheres in three dimensions 
and found, for certain conditions, that it could exist in two distinct 
states which they called the solid and liquid phase. Some computations 
dealing with nonequilibrium configurations with an end to studying 
the equipartition of energy as the system approached equilibrium were 
undertaken by Fermi, Pasta, and Ulam [2] and more recently by North- 
tote and Potts [3]. As a preparatory exercise to the study of a realistic 
model for a liquid, we undertook the numerical study of a one-dimen- 
sional system of hard rods with a short-range linear attractive potential 
between particles. On the basis of knowledge gained by studying such a 
system, we are now in the process of investigating the more realistic 
model of hard discs or spheres with short-range harmonic forces be- 
tween them. Nevertheless the results of this preliminary study seemed 
to have enough interest in themselves as they bear on the general problem 
of N-body machine computations that we felt justified in setting them 
forth in this paper. 

The main advantage of our model is that it allows one to follow the 
dynamical evolution of the system over relatively long periods of time, 
and hence to compute meaningful time averages of dynamical variables 
along a trajectory of the system. In our discussion we shall refer to these 
averages as the “measured” values of the quantity under consideration. 
Thus an evaluation of the time average of the mean square velocity 
yields a measurement of the temperature of the system. These measured 
values can then be compared with the corresponding theoretical values 
as determined from statistical mechanics. Since the system considered 
had a constant volume and energy, phase averages should be calculated 
using a microcanonical ensemble. However, closed form expressions 
for phase averages could only be obtained using an isobaric canonical 
ensemble. These averages were then corrected to first order in l/N to 
give values for the microcanonical ensemble by a method due to Lebo- 
witz and Percus [4]. The measured values of the temperature were accu- 
rate enough to distinguish between the corrected and uncorrected aver- 
ages and agreed with the corrected values in some cases to 1 part in 104. 
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Our pressure measurements were much less accurate than those of 
temperature, agreeing with the theoretical values to only about 1 part 
in 100. This was to be expected since the pressure measurement involved 
the evaluation of the time average of the momentum transfer to the 
walls on the system. Within a one-dimensional system, only one particle 
can interact with each wall. We also measured the pressure of the system 
indirectly by measuring the pair distribution function for the system 
and making use of the virial theorem. In general, this latter measurement 
gave better agreement with theory then did the wall pressure determina- 
tion. 

A second study was related to the accuracy of a machine calculation 
and involved finding the extent to which a computed trajectory could 
be time reversed. Starting with a given set of initial data we computed 
a trajectory up to some point T. The final positions and velocities of 
the particles were then taken as initial data for a new trajectory, the time- 
reversed trajectory of the original trajectory, which was also computed 
up to the point T. We then determined how large T could be (number 
of collisions) before the final configuration of the time-reversed trajectory 
deviated significantly from the initial configuration of the original 
trajectory. Even for the simple system considered where the trajectory 
between collisions could be determined analytically it was only possible 
to get coincidence between the two configurations for a time correspond- 
ing to about 40-50 collisions per particle. We conclude, therefore, that 
it would be completely meaningless to use a machine to observe a Poin- 
cart recurrence cycle for any but the simplest few particle systems. The 
test of reversibility is, of course, the most severe test of accuracy of a 
calculation of a trajectory. Nevertheless, one should keep in mind that 
once one passes the reversal point in a given trajectory calculation one 
is looking not at the pure dynamical evolution of the system but at the 
dynamical evolution of the system in interaction with what is effectively 
a thermal bath represented by the random errors introduced into the 
calculation by rounding (which was always done by truncation) ap- 
proximations, etc. 

We also investigated the problem of the approach to equilibrium of 
our system when its initial configuration is manifestly not an equilibrium 
configuration. The problem here, of course, is to characterize an equilib- 
rium configuration for a closed system. We have examined various cri- 
teria for this purpose. Among others, we took the deviation of the 
velocity distribution from a Gaussian distribution, as measured by a 
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+est, as a measure of the deviation from equilibrium. In many regards 
this test appears to be a rather sensitive test, and it is possible to observe 
the decrease in x2 from an initially large value corresponding to an ini- 
tial nonequilibrium configuration to a final low value which one would 
expect corresponding to a Gaussian distribution. However, there are 
initial configurations, e.g. velocities Gaussianly distributed with all the 
particles filling only a portion of the available volume, for which the 
X2-test gives a poor indication of the deviation from equilibrium. We 
also looked at the change in the coarse-grained entropy of the system 
as a measure of the deviation from equilibrium. While it tended to 
increase, as one approached a Gaussian velocity distribution, it did not 
change percentage-wise nearly as rapidly as did x2. Furthermore, one 
had to choose the size of the velocity cells with some care in computing 
this quantity before meaningful results could be obtained. 

I. DESCRIPTION OF THE MODEL 

The system we undertook to study consisted of N rods of unit length 
and unit mass confined to a box of length L > N. A short range at- 
tractive potential was assumed to exist between neighboring rods of 
such a nature that the attractive force was constant inside this range 
and zero outside. Thus, if ri represents the distance between the centers 
of the ith and (i - 1)th rod measured in units of the rod length, V(r,) 
has the form of a hard core plus triangular well: 

*, 

V(r,) = Vo(ri - 2), 

0, 

ri < 1 

1 <ri<2 

2 < ri 

(1) 

where V,, is a constant. While this potential is too simple to approximate 
a real molecular potential [one would have liked to use at least a par- 
abolic attractive potential in the interval (1,2)], it has the great advantage 
that the motion of the system can be described in terms of known sim- 
ple linear and quadratic functions of the time between collisions. As a 
consequence, the main purpose of a computer is to keep track of the 
momentum changes, which are of course known exactly, during colli- 
sions. 

The solution of the equations of motion for an N-body system with 
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interparticle potential (1) is, of course, quite simple. Consider a clump 
of N particles such that all particles in the clump are closer together 
than 2 units, so that they are all interacting. Only two cases need be con- 
sidered. An interior particle sees no forces acting on it between colli- 
sions and hence moves as a free particle. The end particles see a constant 
attractive force and again their equations of motion can be easily in- 
tegrated between collisions. Thus, we have the following solutions for 
the ith particle position x,: 

(i) particle i is an interior particle in a clump or not part of a clump 

x,(t) = xp + vyt (23) 

(ii) particle i is an end particle in a clump 

for particles of unit mass. The & is according to whether the particle 
is in the left or right end of a clump. In both cases xi and ~8 are the 
values of position and velocity, respectively, at time t,, and xi is meas- 
ured from the left wall of the container. 

The potential V(u) has two singular points, one at the hard core where 
r = 1 and one at the end of its range where r = 2. In the former case 
the two particles collide and exchange momentum while in the latter 
case the forces on the particles change. In both cases one must change 
the analytic solution of the two particles involved. During a collision 
both energy and momentum are conserved so that, if their velocities 
before collision were vi and vi,, they will be vi’- = vi+r and v&r = V; 
after the collision. Thus one must use either (i) or (ii) to compute vi 
and v;+r at the time of collision and replace VP and vf+r in these solu- 
tions by v$ and v$+r to obtain the solutions after collision. In the case 
of a separation or a joining, i.e., where r, = 2, the forces on the par- 
ticles involved change, and so at these singular points one must replace 
solution (i) by (ii) or vice versa for the particles involved. 

ILMETHODOFCALCULATION 

There are essentially two different methods of computing the over-all 
trajectory of the system starting from a set of initial data. One could 
determine the time at which the first singular event occurs by finding 
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all of the times for which each r i = 1 and 2, and then finding the smallest 
of these times. One would then make the necessary changes in velocities 
or trajectory equations as outlined above and recompute the times for 
the occurrence of singular events. The smallest of these recomputed 
times would then determine the next singular event and so on. Proceeding 
from one singular event one could determine the configuration of the 
system at any time. However, for many purposes it is desirable to 
know the configuration of the system at regularly spaced time intervals 
during the evolution of the system. While this information could be 
obtained from the above method of computation, we found that an 
alternate method of computation was more convenient for this purpose 
and also more efficient. 

The second method of computation used by us was to compute the 
final configuration of the system after some fixed interval of time At, 
but neglecting singular events. Then in general several of the Y, will 
be less than 1 indicating that the corresponding particles actually collided 
sometime in the interval A. One finds the times at which these colli- 
sions occurred, makes the necessary changes and recomputes the final 
positions and velocities for these colliding particles. Likewise, one can 
develope criteria for when a split or a joining should have occured, 
again go back to these times, make the necessary changes for such an 
occurrence, and again recompute the final positions and velocites for 
the particles involved. In this way one gets the final corrected config- 
uration of the system at the end of the interval. If At is not too large only 
a few readjustments need be made. The final configuration is now taken 
as the initial configuration for the next interval. Proceeding in this way, 
one obtains a step-wise description of the evolution of the system to- 
gether with a set of configurations. 

Using an IBM 7090 to carry out the above-outlined calculations we 
were able to calculate for a loo-particle system at the rate of about 20 
collisions per second of machine time, using double precision. For 1000 
particles in a comparable situation, this rate was cut to 10 collisions 
per second. We might compare this rate with that attained by Potts 
(personal communication) for calculations on a linear system of har- 
monically bound hard rods. For a 31-particle system he was able to 
calculate 100 collisions per particle in 70 minutes or 44 collisions per 
minute. Thus the change from a linear to an harmonic force, even 
neglecting separations and joinings, changes the computing rate by an 
order of magnitude. 
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III. STATISTICAL MECHANICS PREDICTIONS 

Since we are dealing with a system in one dimension with nearest 
neighbor interactions it is possible to evaluate the partition function as 
well as the distribution functions for the system and hence make a direct 
comparison between the results of equilibrium statistical mechanics [5] 
and those obtained from the calculation of the detailed dynamics of 
system. 

We consider our particles as being enclosed in a one-dimensional 
box of length L with interparticle interactions given by Eq. (1). The 
wall potential V,(r) is given by 

00, rLB 
V,(r) = 

0, r>t 

where r is the distance between the wall and the particle nearest it. Then, 
for a canonical ensemble, the partition function for an N-particle system 
is given by 

Z(L P) = 1 (f!’ 1 exp [ - B { V&J + i2 V(rd + Vto(rN+l)}] 

In general one cannot evaluate the integrals appearing in the expres- 
sion for Z(L, ,8). However, by going over from the canonical ensemble 
(fixed L and /3) to an isobaric ensemble (fixed p, p) by means of a Le- 
gendre transformation, it is possible to evaluate the partition function 
for this ensemble. Thus defining 

WPP, P> = sr .W, PI ev (- PPL) dL 
one finds that 

where here 

f(Pp /q = exp(- 4pP) 0 3 
PB 
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and 

f (PA/3 = exp (- PP + PKJ - exp (- 2PB) 
PVO + PB 

+ ev (- @Be 
BP 

= exp(28V) eW- PWo + PI - exp(- VW0 + P> 
0 

PVO + PB 

+ exp (&yj,f ) exp (- V-CP + vo> 
0 

PB . 

For this ensemble we can calculate average values of L and E: 

QPB, I> = - y 

and 

(4) 

(5) 

The only trouble with the above procedure is that we are not observing 
an isobaric ensemble but rather time averages of a system with constant 
L and E. According to the fundamental assumption of statistical mechan- 
ics, these averages are equal to ensemble averages of a microcanonical 
system. Consequently, in order to make a comparison between our ob- 
served averages of ,4 and p@ we must relate average values in the two 
ensembles. Since the two averages differ only by terms N l/N where N 
is the number of particles in the system, we can make use of the approxi- 
mation procedure developed by Lebowitz and Percus [4] to relate the 
two averages. By expanding the average value in one ensemble about 
the corresponding average value in the other one obtains the result 
that if ( ) denotes microcanonical average, 

- - 
<Q& ~9) = 

{ 

1 f3L a2 1 ai 
1 -z a(p~> ads - - 

( 

a7 
) 

82 ~ - 
2 @PS) + v aLaE 

1 aI7 9 

> 

- --- 2 ap aEz + -.- Q(PA PI, 

where l, l? and p/II, ,8 are related by Eqs. (4) and (5). In particular, if 
Q is taken to be pp, then 

- - 1 a 
‘PBCL, 4) = PP - Yj- a(pB) ___ (3-I ?E) ++ + (A-‘$ +(-; 
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while for Q = p 

In applying these formulas one uses values of p/3 and /3 in evaluating the 
right-hand sides that yield the values 3 and L when substituted into 
the right-hand sides of Eqs. (4) and (5). 

IV. DETERMINATION OF TIME AVERAGES 

In order to check the predictions of statistical mechanics, we compared 
the time averages of /? and p/l with the ensemble averages of these quan- 
tites obtained from Eqs. (6) and (7). The time average of B is obatined 
by computing the time average of 1 /N xv: and taking its reciprocal. 
What was done was to compute this quantity after each AT interval and 
average these values over a large number of such intervals. 

The calculation of the time average of pp for our model is more dif- 
ficult than that for B. We used two different methods of computation. 
The pressure in the system can be gotten directly by calculating the total 
change in momentum at a wall during the interval AT, dividing by LU’, 
and then averaging over a large number of intervals. The chief difficulty 
with this method of calculation is that the wall-pressure in a one-di- 
mensional system suffers rather large fluctuations since it involves only 
the end particles. The other method of “measuring” the pressure in the 
system is to make use of the pair distribution function g(r). If Nt2’(r) dr 

is the number of pairs of particles with a separation between r and 
r + dr, then g(r) is defined by the relation 

Nc2)(r) dr = qg(r) dr. (8) 

The pressure can then be obtained in terms of g(r) by means of the virial 
theorem. One has that 

R = $ (pq/2m) = 4 pL - $ i (ri * FJ. 
i=l i=l 
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Consequently 

pL = N//3 - C r,Fi 

where ‘p is the interparticle potential. For the potential of our model, 
with V,, = 1, 

1: g(r) z r dr = jr g(r)r dr - $ g(l), 

so that finally 

pP = G + ($‘gU) - ($)2B 1: g(r>r dr. (9) 

While the value of the integral can be gotten directly from the meas- 
ured values of g(r), it is necessary to extrapolate these values to obtain 
g(l), This extrapolation was accomplished by fitting a straight line to 
In g(r) since, in a one dimensional system, the effect of all other particles 
on two neighboring particles can be replaced by an effective pressure. 
One can also take this effective pressure to be a measure of the pressure 
of the system. 

V. COMPARISON OF THEORY AND EXPERIMENT 

The main results of our work are exhibited in Table I. In all cases 
the time averages are computed from the end portions of longer runs 
so that, for these portions, we can expect an equipartition between kinetic 
and potential energy. This expectation was born out by observing the 
change in the time average of v2 toward the end of a run. This change 
has been indicated by the -& values attached to the experimental values 
of (kT)-l. Likewise, we have indicated the change in the time average 
of the wall pressure at the end of the run by a f value attached to this 
time average. We see from the table that the theoretical and experimental 
values of these quantities agree within experimental error, and that the 
errors in the values of the wall pressure are much larger than those 
in the temperature. We have also indicated in our table the running 
time on the IBM 7094 machine used for the calculations. The long run- 
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ning times are due, in part, to the use of double precision which was 
found to be necesssary. 

TABLE I 

No. of particles 999 

Length of container 1201 
Energy 116.24 

(kT)-l 
(experimental) 

(kT)-l 
(theoretical microcanonical) 

(kT)-’ 
(theoretical canonical, isobaric) 

.54626 zk .0003 

999 999 

1500 2500 
456.43 612.92 

.48353&.0002 .54319*.0003 

.54618 .48349 .54263 

.54511 .48261 .54173 

Pressure, wall 8.28&.13 3.4Ojz.07 1.29f.12 
Pressure, effective 7.94 3.53 1.08 
Pressure, virial 7.88 3.55 1.08 
Pressure, theoretical 8.21 3.58 1.09 

No. of time intervals 28 
No. of collisions 106,953 
Running time in hours 1.63 

48 
84,168 
1.2 

33.07 

50 
33,445 

.91 

Lim N’*‘(r) dr (experimental) 
r+m 
Lim W2)(r) dr (theoretical) 
C%O 

41 .oo 19.89 

41.58 33.27 19.96 

The calculations of the effective and the virial pressure in Table I 
were carried out with the help of the measured pair distribution functions. 
A typical pair distribution function is shown in Fig. 1 for the case of 
999 particles, container of length 2500, energy 612.92 and dr = .05. 
We see that it appears to be approaching an asymptotic value which 
was determined to be 19.89. A theoretical value for this value can be 
obtained by noting that 

1 aL 
lim g(r)= l+LeapS. 
r-h= 

For the system under consideration the l/L2 (aL/ap/3) correction term 
is approximately - 4.3 x 10-4. Thus, using Eq. (8) we obtain a theo- 
retical value for the asymptote of 19.96. Theoretical and experimental 
values of lim N@)(I) dr are given in Table I. 
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One can derive an expression for g(r) in the region 1 < r < 2 di- 
rectly from a knowledge of the partition function (3). Alternately, one 
can obtain this expression heuristically by assuming that, in addition 

50. r 

l ’ 

IO., 
2. 3. r 4. 

I 
5. rI 

FIG. 1. Typical averaged pair distribution function for a lOOO-particle system of 
hard rods with short-range attractive forces. WI(r) dr is the number of pairs with a 
separation between centers lying between r and r + dr with dr = 0.05. 

to the direct force between two neighboring particles, there is an effec- 
tive pressure force acting on them due to the other particles in the sys- 
tem. Consequently, in this region (again choosing V,, = 1) 

where C is determined by the normalization condition ST gl(r) dr 
= L/N, corresponding to l/L Sf& g(r) dr = 1 + O(1). The experimen- 
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tally determined slope of In g,(r), obtained by fitting a straight line to 
the experimental points by means of a least squares fit, then yields 
what we have called the effective pressure. In Fig. 2 we have plot- 
ted the experimental values of In {N(r) &} together with the curve 

ln {W/~> a(r) d r, using the theoretically determined value of p. 1 

5( 

4( 

3( 
r=\ 
n 
T 
A- 
N 
5 
5 

2( 

IO. I 
I. 1.2 1.4 r 1.6 I.6 2.0 

FIG. 2. Logarithmic plot of averaged pair distribution of Fig. 1 in interval 1 < r < 2. 

VI. REVERSIBILITY OF SYSTEM AND ROUNDING ERRORS 

The main sources of error in our calculations were the rounding er- 
rors involved in computing the times at which a collision occurred and 
when a discontinuity in the interparticle force was reached. This in turn 
resulted in errors in computing the positions and velocities of the par- 
ticles involved in such an event. There are a number of ways of estimat- 
ing the effect of these errors on the calculation. By noting the change in 
the energy of the system, which should be a constant of the motion, 
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we can get a measure of the accuracy of the measured time averages 
for the system, In all cases the energy was observed to fluctuate by less 
than one part in lo6 during a run when double precision methods were 
employed. Double precision was necessary since the energy was found 
to vary appreciably during a run when only single precision was em- 
ployed. Single precision with a statistical rounding off method gave only 
slightly better results than without the rounding method. From the 
constancy of the energy over a given run, it is reasonable to conclude 
that the computed time averages were close to those that would have 
been computed without roundoff errors. 

A much more rigorous test of the accuracy of our method of calcula- 
tion was obtained by comparing a given trajectory with its time reversed 
counterpart, This latter trajectory was obtained by using the final state 
of the original trajectory with all velocities reversed as a new initial state. 
We then determined the interval over which the two trajectories coincided. 
In making this determination, we took the point of divergence to be 
whenever a coordinate or velocity differed by more than 1% on the 
two trajectories. For a system of 100 particles typical trajectories were 
observed to coincide for about 50 collisions per particle. Similar results 
hold for systems of 10 and 1000 particles, as might be expected from the 
method of calculation. 

With such an elaborate calculation it was comforting that we were 
able to get reversibility for as long an interval as we did. On the basis 
of these observations, we concluded that our metohd of calculation and 
the associated code used for the calculation were without error. However, 
these observations also showed that even for simple systems one cannot 
hope to compute trajectories for long periods with any accuracy. More- 
over, in our case, the trajectories could be given by analytic expres- 
sions between collisions, or between discontinuities in the forces between 
particles. From these results, it appears that the determination of pa- 
rameters associated with large portions of a trajectory, e.g., recurrence 
times, cannot be accurately determined by means of a computer. It 
would, for instance, be impossible to observe a Poincare cycle. The 
effect of the errors that lead to the nonreversibility of trajectories will 
be small, however, when we compute averages over a trajectory, as the 
constancy of the energy of our system showed. 
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VII. APPROACH TO EQUILIBRIUM 

Strictly speaking, it is meaningless to talk about the approach to 
equilibrium of an isolated finite system, since there will exist a finite 
recurrence time corresponding to any chosen accuracy of recurrence. 
The term “equilibrium” can properly refer only to a set of states, an 
infinite system, or one to which stochastic forces are applied. Although 
the extent to which the last possibility has been avoided in our compu- 
tations is questionable, a single state with well-defined initial conditions 
will still be macroscopically indistinguishable from an equilibrium situa- 
tion over most of its lifetime. The criterion for deciding when a system 
has reached such a configuration is hardly unique, so that the study of 
the approach to equilibrium of an isolated system is beset with a good 
deal of arbitrariness. 

We have used, as one measure of how close a configuration is to an 
equilibrium configuration, the deviation of the velocity distribution from 
Gaussian. The measure of this deviation was taken to be x2 = c, 
(ni - xJ2/ni, where the sum is over the velocity intervals (vi, v, + .,‘lv,), 
ni is the expected number of particles with velocities in this interval for 
Gaussianly distributed velocities, and X, is the observed number. The 
intervals were so chosen that the IZ~ were all equal. Finally, the velocity 
domain was broken into 20 intervals so that, in the language of probabi- 
lity theory we had a system of 19 “degrees of freedom.” For such a 
system the probability that a normal distribution in each interval cen- 
tered around yli has a given x2 or greater has been tabulated. For x2 = 30, 
P = .05, for x2 = 12.4, P = .90. 

In one instance we measured x2 as a function of time for a system of 
999 particles with the initial distances between particles uniform and 
initial velocities chosen randomly to have the values i 1. At t = 0, 
x2 = 9000. At t = 10, x2 = 291; at t = 60, x2 = 18 ; and thereafter 
x2 fluctuated around the value 15. One can conclude therefore that the 
system “thermalized” in about 60 time intervals. On the other hand, 
we observed a system with random initial positions and velocities distrib- 
uted according to a double-peaked Gaussian with the velocity of the 
second peak five times that of the first. At t = 815 (corresponding to 
44 hours of machine time) the system had still not thermalized. 

In addition to studies of velocity thermalization, we investigated po- 
sition thermalization, again using a x2 criterion. We started wity a system 
with velocites gaussianly distributed and the initial positions between 
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particles all equal to 2.1. Since the total available volume is 2500 and 
the system contained 999 particles the initial configuration corresponded 
to a “bunching together” of the particles. In the course of time the 
system expanded to fill the box. However, position thermalization oc- 
curred very slowly, taking 235 time intervals or about 166 collisions per 
particle. Undoubtedly the slow approach to equilibrium in this and other 
cases is due to the fact that we are dealing with a one-dimensional system. 

VIII. CONCLUSIONS 

We have seen that it is possible to reproduce the phase space averages 
of equilibrium statistical mechanics to very high accuracy by studying 
the long time dynamic behavior of a model many-body system. The 
accuracy was sufficient to distinguish as well between isobaric and iso- 
volume, canonical and microcanonical distributions. We have also seen 
how the approach to equilibrium may be assessed and have given exam- 
ples of its dependence upon initial conditions. However, by means of 
reversibility tests, we have shown as well that the exact dynamics can 
be followed for only an embarrassingly short time through efficient 
use of a high-speed digital computer, so that detailed dynamical questions 
are not amenable to analysis at this level. 

APPENDIX 

The Code 

The appendix outlines our method of computation in determining 
the trajectories of the N-body system considered here. The flow chart 
diagram of Fig. 3 is a quick survey of this method. 

Since the problems solved in the computing code were those that 
revolved about distances between particles, the basic variables used 
in the code were ri, VT+ and ai, denoting respectively the relative posi- 
tion, the relative velocity and the relative force between the ith and the 
(i - 1)th particles. Thus, instead of Eqs. (2a) and (2b), we used 

r,(t) = rp + vrp + a@/2 (104 

v%(t) = vrf + a,t, (lob) 
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FIG. 3. Flow chart for computation of trajectories. 



SIMPLE MODEL OF A ONE-DIMENSIONAL FLUID 85 

where rj’ and vr$’ are the values at time to and r,(t) and vr%(t) are the 
values at time t, + t. For convenience i = 1 and i = N + 1 were taken 
respectively to be the subscripts for the left wall and the first particle 
and for the Nth particle and the right wall. 

Starting with a set of values at time t,,, Eqs. (10a) and (lob) with t = 1 
were used to compute the values r,(l) and vr,(l) for the time t, = t, + 1, 
as though no singularity existed in the force fields of the particles. While 
uptating each r! and vrp we checked for the first occurrence of a sin- 
gularity in the ith force field during the time interval from to to tl. (Bo- 
xes 6 and 7 in Fig. 3.) This required testing Eq. (lOa) for each i, i = 1, 
2 3 -*-, N + 1, to find if a t existed in the time interval for which ri(t) = 2 
or r%(t) = 1. If ai is zero, then r,(t) is a linear function of t. This means 
that a simple comparison of r,(l) with rf will tell if a situation with 
r,(t) = 2 or r,(t) = 1 has occurred. If ai is not zero, then r%(t) is a qua- 
dratic function of t, and a mere comparison of r,(l) with ri will not be 
sufficient. In this case we would test Eq. (lOa) first for the existence of 
a solution of r,(t) = 2. If none existed and if the particles were in an 
attractive force field, we would compare ri(l) with 1 to find if a collision 
had occurred. If a singularity did occur, the time from the singularity 
to time t,, denoted dti, was computed and saved along with the infor- 
mation of how the relative velocities or force fields should have been 
changed. 

Next we ordered the dti. The largest dti, to which we assign the sub- 
script k, located the first of our uncorrected singularities. After collecting 
any pertinent statistics from the occurrence at time t, - dtk, the r,(l) 
and vri(l), j = k - 1, k, k + 1, were recomputed while checking for 
a singularity in the force field of each during the time interval from 
tl - dt, to t,, as above. If a collision had occurred to the (k - 1)st 
and kth particles, i.e., rk(l - dtk) = 1, this recomputation was done on 
the basis of vr,(t) changing direction, but not magnitude, at time t, - dtk. 
If a particle collided with a wall, k - 1 could be disregarded if k = 1, 
and k + 1 could be disregarded if k = N + 1. If a change in force 
field occurred, the changes were made on the basis of corrections in 
a&l, ak, ak+l. Again the dti were ordered, the first one corrected, and so 
on until there were no uncorrected singularities in the time interval 
from to to tl (boxes 8, 9, and 10 in Fig. 3). 

Then, unless we wanted to print our most recent statistics, we computed 
from the values at time t, for the values at t2 = ti + 1, etc. When our 
calculation had run for as many time intervals as we desired, we then 
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reversed the system by reversing the signs of the velocities and initializ- 
ing the time and other counting parameters. (Boxes 30, 40, and 2.) 
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